数学必修五教案7篇

时间:
tddiction
分享
下载本文

教案设计中应考虑到课堂管理策略,以维持良好的学习秩序,教案能够帮助教师合理分配课堂时间,提高教学效率,以下是大爱范文网小编精心为您推荐的数学必修五教案7篇,供大家参考。

数学必修五教案7篇

数学必修五教案篇1

一、教材分析

【教材地位及作用】

基本不等式又称为均值不等式,选自北京师范大学出版社普通高中课程标准实验教科书数学必修5第3章第3节内容。教学对象为高二学生,本节课为第一课时,重在研究基本不等式的证明及几何意义。本节课是在系统的学习了不等关系和掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续进一步了解不等式的性质及运用,研究最值问题奠定基础。因此基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,它也是对学生进行情感价值观的好素材,所以基本不等式应重点研究。

【教学目标】

依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:

知识与技能目标:理解掌握基本不等式,理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;

过程与方法目标:通过探究基本不等式,使学生体会知识的形成过程,培养分析、解决问题的能力;

情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。

【教学重难点】

重点:理解掌握基本不等式,能借助几何图形说明基本不等式的意义。

难点:利用基本不等式推导不等式.

关键是对基本不等式的理解掌握.

二、教法分析

本节课采用观察——感知——抽象——归纳——探究;启发诱导、讲练结合的教学方法,以学生为主体,以基本不等式为主线,从实际问题出发,放手让学生探究思索。利用多媒体辅助教学,直观地反映了教学内容,使学生思维活动得以充分展开,从而优化了教学过程,大大提高了课堂教学效率.

三、学法指导

新课改的精神在于以学生的发展为本,把学习的主动权还给学生,倡导积极主动,勇于探索的学习方法,因此,本课主要采取以自主探索与合作交流的学习方式,通过让学生想一想,做一做,用一用,建构起自己的知识,使学生成为学习的主人。

四、教学过程

教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。

具体过程安排如下:

(一)基本不等式的教学设计创设情景,提出问题

设计意图:数学必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实.基于此,设置如下情境:

上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。

[问题1]请观察会标图形,图中有哪些特殊的几何图形?它们在面积上有哪些相等关系和不等关系?(让学生分组讨论)

(二)探究问题,抽象归纳

基本不等式的教学设计1.探究图形中的不等关系

形的角度----(利用多媒体展示会标图形的变化,引导学生发现四个直角三角形的面积之和小于或等于正方形的面积.)

数的角度

[问题2]若设直角三角形的两直角边分别为a、b,应怎样表示这种不等关系?

学生讨论结果:。

[问题3]大家看,这个图形里还真有点奥妙。我们从图中找到了一个不等式。这里a、b的取值有没有什么限制条件?不等式中的等号什么时候成立呢?(师生共同探索)

咱们再看一看图形的变化,(教师演示)

(学生发现)当a=b四个直角三角形都变成了等腰直角三角形,他们的面积和恰好等于正方形的面积,即.探索结论:我们得到不等式,当且仅当时等号成立。

设计意图:本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式基本不等式的教学设计。在此基础上,引导学生认识基本不等式。

2.抽象归纳:

一般地,对于任意实数a,b,有,当且仅当a=b时,等号成立。

[问题4]你能给出它的证明吗?

学生在黑板上板书。

[问题5]特别地,当时,在不等式中,以、分别代替a、b,得到什么?

学生归纳得出。

设计意图:类比是学习数学的一种重要方法,此环节不仅让学生理解了基本不等式的来源,突破了重点和难点,而且感受了其中的函数思想,为今后学习奠定基础.

【归纳总结】

如果a,b都是非负数,那么,当且仅当a=b时,等号成立。

我们称此不等式为基本不等式。其中称为a,b的算术平均数,称为a,b的几何平均数。

3.探究基本不等式证明方法:

[问题6]如何证明基本不等式?

设计意图:在于引领学生从感性认识基本不等式到理性证明,实现从感性认识到理性认识的升华,前面是从几何图形中的面积关系获得不等式的,下面用代数的思想,利用不等式的性质直接推导这个不等式。

方法一:作差比较或由基本不等式的教学设计展开证明。

方法二:分析法

要证

只要证2

要证,只要证2

要证,只要证

显然,是成立的。当且仅当a=b时,中的等号成立。

4.理解升华

1)文字语言叙述:

两个正数的算术平均数不小于它们的几何平均数。

2)符号语言叙述:

若,则有,当且仅当a=b时,。

[问题7]怎样理解“当且仅当”?(学生小组讨论,交流看法,师生总结)

“当且仅当a=b时,等号成立”的含义是:

当a=b时,取等号,即;

仅当a=b时,取等号,即。

3)探究基本不等式的几何意义:

基本不等式的教学设计借助初中阶段学生熟知的几何图形,引导学生探究不等式的几何解释,通过数形结合,赋予不等式几何直观。进一步领悟不等式中等号成立的条件。

如图:ab是圆的直径,点c是ab上一点,

cd⊥ab,ac=a,cb=b,

[问题8]你能利用这个图形得出基本不等式的几何解释吗?

(教师演示,学生直观感觉)

易证rtacdrtdcb,那么cd2=ca·cb

即cd=.

这个圆的半径为,显然,它大于或等于cd,即,其中当且仅当点c与圆心重合,即a=b时,等号成立.

因此:基本不等式几何意义可认为是:在同一半圆中,半径不小于半弦(直径是最长的弦);或者认为是,直角三角形斜边的一半不小于斜边上的高.

4)联想数列的知识理解基本不等式

从形的角度来看,基本不等式具有特定的几何意义;从数的角度来看,基本不等式揭示了“和”与“积”这两种结构间的不等关系.

[问题9]回忆一下你所学的知识中,有哪些地方出现过“和”与“积”的结构?

归纳得出:

均值不等式的代数解释为:两个正数的等差中项不小它们的等比中项.

基本不等式的教学设计(四)体会新知,迁移应用

例1:(1)设均为正数,证明不等式:基本不等式的教学设计

(2)如图:ab是圆的直径,点c是ab上一点,设ac=a,cb=b,

,过作交于,你能利用这个图形得出这个不等式的一种几何解释吗?

设计意图:以上例题是根据基本不等式的使用条件中的难点和关键处设置的,目的是利用学生原有的平面几何知识,进一步领悟到不等式成立的条件,及当且仅当时,等号成立。这里完全放手让学生自主探究,老师指导,师生归纳总结。

(五)演练反馈,巩固深化

公式应用之一:

1.试判断与与2的大小关系?

问题:如果将条件“x>0”去掉,上述结论是否仍然成立?

2.试判断与7的大小关系?

公式应用之二:

设计意图:新颖有趣、简单易懂、贴近生活的问题,不仅极大地增强学生的兴趣,拓宽学生的视野,更重要的是调动学生探究钻研的兴趣,引导学生加强对生活的关注,让学生体会:数学就在我们身边的生活中

(1)用一个两臂长短有差异的天平称一样物品,有人说只要左右各秤一次,将两次所称重量相加后除以2就可以了.你觉得这种做法比实际重量轻了还是重了?

(2)甲、乙两商场对单价相同的同类产品进行促销.甲商场采取的促销方式是在原价p折的基础上再打q折;乙商场的促销方式则是两次都打折.对顾客而言,哪种打折方式更合算?(0≠q)

(五)反思总结,整合新知:

通过本节课的学习你有什么收获?取得了哪些经验教训?还有哪些问题需要请教?

设计意图:通过反思、归纳,培养概括能力;帮助学生总结经验教训,巩固知识技能,提高认知水平.从各种角度对均值不等式进行总结,目的是为了让学生掌握本节课的重点,突破难点

老师根据情况完善如下:

知识要点:

(1)重要不等式和基本不等式的条件及结构特征

(2)基本不等式在几何、代数及实际应用三方面的意义

思想方法技巧:

(1)数形结合思想、“整体与局部”

(2)归纳与类比思想

(3)换元法、比较法、分析法

(七)布置作业,更上一层

1.阅读作业:预习基本不等式的教学设计

2.书面作业:已知a,b为正数,证明不等式基本不等式的教学设计

3.思考题:类比基本不等式,当a,b,c均为正数,猜想会有怎样的不等式?

设计意图:作业分为三种形式,体现作业的巩固性和发展性原则,同时考虑学生的差异性。阅读作业是后续课堂的铺垫,而思考题不做统一要求,供学有余力的学生课后研究。

五、评价分析

1.在建立新知的过程中,教师力求引导、启发,让学生逐步应用所学的知识来分析问题、解决问题,以形成比较系统和完整的知识结构。每个问题在设计时,充分考虑了学生的具体情况,力争提问准确到位,便于学生思考和回答。使思考和提问持续在学生的最近发展区内,学生的思考有价值,对知识的理解和掌握在不断的思考和讨论中完善和加深。

2.本节的教学中要求学生对基本不等式在数与形两个方面都有比较充分的认识,特别强调数与形的统一,教学过程从形得到数,又从数回到形,意图使学生在比较中对基本不等式得以深刻理解。“数形结合”作为一种重要的数学思想方法,不是教师提一提学生就能够掌握并且会用的,只有学生通过实践,意识到它的好处之后,学生才会在解决问题时去尝试使用,只有通过不断的使用才能促进学生对这种思想方法的再理解,从而达到掌握它的目的。

数学必修五教案篇2

教学目的:

掌握圆的标准方程,并能解决与之有关的问题

教学重点:

圆的标准方程及有关运用

教学难点:

标准方程的灵活运用

教学过程:

一、导入新课,探究标准方程

二、掌握知识,巩固练习

练习:

1.说出下列圆的方程

⑴圆心(3,-2)半径为5

⑵圆心(0,3)半径为3

2.指出下列圆的圆心和半径

⑴(x-2)2+(y+3)2=3

⑵x2+y2=2

⑶x2+y2-6x+4y+12=0

3.判断3x-4y-10=0和x2+y2=4的位置关系

4.圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程

三、引伸提高,讲解例题

例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的'数学方法)

练习:

1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。

2、某圆过a(-10,0)、b(10,0)、c(0,4),求圆的方程。

例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求a2p2的长度。

例3、点m(x0,y0)在x2+y2=r2上,求过m的圆的切线方程(一题多解,训练思维)

四、小结练习p771,2,3,4

五、作业p811,2,3,4

数学必修五教案篇3

一、教学目标:

1、知识与技能目标

①理解循环结构,能识别和理解简单的框图的功能。

②能运用循环结构设计程序框图解决简单的问题。

2、过程与方法目标

通过模仿、操作、探索,学习设计程序框图表达,解决问题的过程,发展有条理的思考与表达的能力,提高逻辑思维能力。

3、情感、态度与价值观目标

通过本节的自主性学习,让学生感受和体会算法思想在解决具体问题中的意义,增强学生的创新能力和应用数学的意识。三、教法分析

二、教学重点、难点

重点:理解循环结构,能识别和画出简单的循环结构框图,

难点:循环结构中循环条件和循环体的确定。

三、教法、学法

本节课我遵循引导发现,循序渐进的思路,采用问题探究式教学。运用多媒体,投影仪辅助。倡导“自主、合作、探究”的学习方式。

四、 教学过程:

(一)创设情境,温故求新

引例:写出求 的值的一个算法,并用框图表示你的算法。

此例由学生动手完成,投影展示学生的做法,师生共同点评。鼓励学生一题多解——求创。

设计引例的目的是复习顺序结构,提出递推求和的方法,导入新课。此环节旨在提升学生的求知欲、探索欲,使学生保持良好、积极的情感体验。

(二)讲授新课

1、循序渐进,理解知识

?1】选择“累加器”作为载体,借助“累加器”使学生经历把“递推求和”转化为“循环求和”的过程,同时经历初始化变量,确定循环体,设置循环终止条件3个构造循环结构的关键步骤。

(1)将“递推求和”转化为“循环求和”的缘由及转化的方法和途径

引例“求 的值”这个问题的自然求和过程可以表示为:

用递推公式表示为:

直接利用这个递推公式构造算法在步骤 中使用了 共100个变量,计算机执行这样的算法时需要占用较大的内存。为了节省变量,充分体现计算机能以极快的速度进行重复计算的优势,需要从上述递推求和的步骤 中提取出共同的结构,即第n步的结果=第(n-1)步的结果+n。若引进一个变量 来表示每一步的计算结果,则第n步可以表示为赋值过程 。

(2)“ ”的含义

利用多媒体动画展示计算机中累加器的工作原理,借助形象直观对知识点进行强调说明① 的作用是将赋值号右边表达式 的值赋给赋值号左边的变量 。

②赋值号“=”右边的变量“ ”表示前一步累加所得的和,赋值号“=”左边的“ ”表示该步累加所得的和,含义不同。

③赋值号“=”与数学中的等号意义不同。 在数学中是不成立的。

借助“累加器”既突破了难点,同时也使学生理解了 中 的变化和 的含义。

(3)初始化变量,设置循环终止条件

由 的初始值为0, 的值由1增加到100,可以初始化循环变量和设置循环终止条件。

?2】循环结构的概念

根据指定条件决定是否重复执行一条或多条指令的控制结构称为循环结构。

教师学生一起共同完成引例的框图表示,并由此引出本节课的重点知识循环结构的概念。这样讲解既突出了重点又突破了难点,同时使学生体会了问题的抽象过程和算法的构建过程。还体现了我们研究问题常用的“由特殊到一般”的思维方式。

2、类比探究,掌握知识

例1:改造引例的程序框图表示①求 的值

②求 的值

③求 的值

④求 的值

此例可由学生独立思考、回答,师生共同点评完成。

通过对引例框图的反复改造逐步帮助学生深入理解循环结构,体会用循环结构表达算法,关键要做好三点:①确定循环变量和初始值②确定循环体③确定循环终止条件。

数学必修五教案篇4

课题:命题

课时:001

课型:新授课

教学目标

1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;

2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;

3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

教学重点与难点

重点:命题的概念、命题的构成

难点:分清命题的条件、结论和判断命题的真假

教学过程

一、复习回顾

引入:初中已学过命题的知识,请同学们回顾:什么叫做命题?

二、新课教学

下列语句的表述形式有什么特点?你能判断他们的真假吗?

(1)若直线a∥b,则直线a与直线b没有公共点.

(2)2+4=7.

(3)垂直于同一条直线的两个平面平行.

(4)若x2=1,则x=1.

(5)两个全等三角形的面积相等.

(6)3能被2整除.

讨论、判断:学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。

教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。

抽象、归纳:

1、命题定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.

命题的定义的要点:能判断真假的陈述句.

在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.

例1:判断下列语句是否为命题?

(1)空集是任何集合的子集.

(2)若整数a是素数,则是a奇数.

(3)指数函数是增函数吗?

(4)若平面上两条直线不相交,则这两条直线平行.

(5)=-2.

(6)x>15.

让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.

解略。

引申:以前,同学们学习了很多定理、推论,这些定理、推论是否是命题?同学们可否举出一些定理、推论的例子来看看?

通过对此问的思考,学生将清晰地认识到定理、推论都是命题.

过渡:同学们都知道,一个定理或推论都是由条件和结论两部分构成(结合学生所举定理和推论的例子,让学生分辨定理和推论条件和结论,明确所有的定理、推论都是由条件和结论两部分构成)。紧接着提出问题:命题是否也是由条件和结论两部分构成呢?

2、命题的构成――条件和结论

定义:从构成来看,所有的命题都具由条件和结论两部分构成.在数学中,命题常写成“若p,则q”或者“如果p,那么q”这种形式,通常,我们把这种形式的命题中的p叫做命题的条件,q叫做命题结论.

例2:指出下列命题中的条件p和结论q,并判断各命题的真假.

(1)若整数a能被2整除,则a是偶数.

(2)若四边行是菱形,则它的对角线互相垂直平分.

(3)若a>0,b>0,则a+b>0.

(4)若a>0,b>0,则a+b<0.

(5)垂直于同一条直线的两个平面平行.

此题中的(1)(2)(3)(4),较容易,估计学生较容易找出命题中的条件p和结论q,并能判断命题的真假。其中设置命题(3)与(4)的目的在于:通过这两个例子的比较,学更深刻地理解命题的定义——能判断真假的陈述句,不管判断的结果是对的还是错的。

此例中的命题(5),不是“若p,则q”的形式,估计学生会有困难,此时,教师引导学生一起分析:已知的事项为“条件”,由已知推出的事项为“结论”.

解略。

过渡:从例2中,我们可以看到命题的两种情况,即有些命题的结论是正确的,而有些命题的结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题.

3、命题的分类

真命题:如果由命题的条件p通过推理一定可以得出命题的结论q,那么这样的命题叫做真命题.

假命题:如果由命题的条件p通过推理不一定可以得出命题的结论q,那么这样的命题叫做假命题.

强调:

(1)注意命题与假命题的区别.如:“作直线ab”.这本身不是命题.也更不是假命题.

(2)命题是一个判断,判断的结果就有对错之分.因此就要引入真命题、假命题的的概念,强调真假命题的大前提,首先是命题。

判断一个数学命题的真假方法:

(1)数学中判定一个命题是真命题,要经过证明.

(2)要判断一个命题是假命题,只需举一个反例即可.

例3:把下列命题写成“若p,则q”的形式,并判断是真命题还是假命题:

(1)面积相等的两个三角形全等。

(2)负数的立方是负数。

(3)对顶角相等。

分析:要把一个命题写成“若p,则q”的形式,关键是要分清命题的条件和结论,然后写成“若条件,则结论”即“若p,则q”的形式.解略。

三、巩固练习:

p4第2,3。

四、作业:

p8:习题1.1a组~第1题

五、教学反思

师生共同回忆本节的学习内容.

1、什么叫命题?真命题?假命题?

2、命题是由哪两部分构成的?

3、怎样将命题写成“若p,则q”的形式.

4、如何判断真假命题.

数学必修五教案篇5

一、教学目标

1、知识与技能:

(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2、过程与方法:

(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3、情感态度与价值观:

(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点

让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具

(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪。

四、教学过程

(一)创设情景,揭示课题

1、由六根火柴最多可搭成几个三角形?(空间:4个)

2在我们周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?

3、展示具有柱、锥、台、球结构特征的空间物体。

问题:请根据某种标准对以上空间物体进行分类。

(二)、研探新知

空间几何体:多面体(面、棱、顶点):棱柱、棱锥、棱台;

旋转体(轴):圆柱、圆锥、圆台、球。

1、棱柱的结构特征:

(1)观察棱柱的几何物体以及投影出棱柱的图片,

思考:它们各自的特点是什么?共同特点是什么?

(学生讨论)

(2)棱柱的主要结构特征(棱柱的概念):

①有两个面互相平行;

②其余各面都是平行四边形;

③每相邻两上四边形的公共边互相平行。

(3)棱柱的表示法及分类:

(4)相关概念:底面(底)、侧面、侧棱、顶点。

2、棱锥、棱台的结构特征:

(1)实物模型演示,投影图片;

(2)以类似的方法,根据出棱锥、棱台的结构特征,并得出相关的概念、分类以及表示。

棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形。

棱台:且一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。

3、圆柱的结构特征:

(1)实物模型演示,投影图片——如何得到圆柱?

(2)根据圆柱的概念、相关概念及圆柱的表示。

4、圆锥、圆台、球的结构特征:

(1)实物模型演示,投影图片

——如何得到圆锥、圆台、球?

(2)以类似的方法,根据圆锥、圆台、球的结构特征,以及相关概念和表示。

5、柱体、锥体、台体的概念及关系:

探究:棱柱、棱锥、棱台都是多面体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否互相转化?

圆柱、圆锥、圆台呢?

6、简单组合体的结构特征:

(1)简单组合体的构成:由简单几何体拼接或截去或挖去一部分而成。

(2)实物模型演示,投影图片——说出组成这些物体的几何结构特征。

(3)列举身边物体,说出它们是由哪些基本几何体组成的。

(三)排难解惑,发展思维

1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱?(反例说明)

2、棱柱的何两个平面都可以作为棱柱的底面吗?

3、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

(四)巩固深化

练习:课本p7练习1、2;课本p8习题1、1第1、2、3、4、5题

(五)归纳整理

由学生整理学习了哪些内容。

数学必修五教案篇6

目的要求:

1.复习巩固求曲线的方程的基本步骤;

2.通过教学,逐步提高学生求贡线的方程的能力,灵活掌握解法步骤;

3.渗透“等价转化”、“数形结合”、“整体”思想,培养学生全面分析问题的能力,训练思维的深刻性、广阔性及严密性。

教学重点、难点:

方程的求法教学方法:讲练结合、讨论法

教学过程:

一、学点聚集:

1.曲线c的方程是f(x,y)=0(或方程f(x,y)=0的曲线是c)实质是

①曲线c上任一点的坐标都是方程f(x,y)=0的解

②以方程f(x,y)=0的解为坐标的点都是曲线c上的点

2.求曲线方程的基本步骤

①建系设点;

②寻等列式;

③代换(坐标化);

④化简;

⑤证明(若第四步为恒等变形,则这一步骤可省略)

二、基础训练题:

221.方程x-y=0的曲线是()

a.一条直线和一条双曲线b.两个点c.两条直线d.以上都不对

2.如图,曲线的方程是()

a.x?y?0 b.x?y?0 c.

xy?1 d.

x?1 y3.到原点距离为6的点的轨迹方程是。

4.到x轴的距离与其到y轴的距离之比为2的点的轨迹方程是。

三、例题讲解:

例1:已知一条曲线在y轴右方,它上面的每一点到a?2,0?的距离减去它到y轴的距离的差都是2,求这条曲线的方程。

例2:已知p(1,3)过p作两条互相垂直的直线l

1、l2,它们分别和x轴、y轴交于b、c两点,求线段bc的中点的轨迹方程。

2例3:已知曲线y=x+1和定点a(3,1),b为曲线上任一点,点p在线段ab上,且有bp∶pa=1∶2,当点b在曲线上运动时,求点p的轨迹方程。

巩固练习:

1.长为4的线段ab的两个端点分别在x轴和y轴上滑动,求ab中点m的轨迹方程。

22.已知△abc中,b(-2,0),c(2,0)顶点a在抛物线y=x+1移动,求△abc的重心g的轨迹方程。

思考题:

已知b(-3,0),c(3,0)且三角形abc中bc边上的高为3,求三角形abc的垂心h的轨迹方程。

小结:

1.用直接法求轨迹方程时,所求点满足的条件并不一定直接给出,需要仔细分析才能找到。

2.用坐标转移法求轨迹方程时要注意所求点和动点之间的联系。

作业:

苏大练习第57页例3,教材第72页第3题、第7题。

数学必修五教案篇7

教材分析

本节课重在探究等比数列的前n项和公式的推导及简单的应用。教学中注重公式的形成过程及数学思想方法的渗透,并揭示公式的结构特征和内在联系.就知识的应用价值来看,它是从大量数学问题和现实问题中抽象出来的模型,在公式推导中所蕴含的数学思想方法在各种数列求和问题中有着广泛的应用.就内容的人文价值上看,它的'探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生数学的思考问题的良好载体.

教学目标

知识与技能: 掌握等比数列的前n项和公式以及推导方法;会用等比数列的前n项和公式解决有关等比数列的一些简单问题.

过程与方法: 经历等比数列前n 项和的推导过程,总结数列求和方法,体会数学中的思想方法.

情感态度与价值观:通过教材中的实际引例,激发学生学习数学的积极性及学习数学的主动性.

教学重点

等比数列的前n项和公式推导及公式的简单应用

教学难点

等比数列的前n项和公式推导过程和思想方法

教学过程

Ⅰ、课题导入

[创设情境]

[提出问题] “国王对国际象棋的发明者的奖励”的故事

Ⅱ、讲授新课

[分析问题]如果把各格所放的麦粒数看成是一个数列,我们可以得到一个等比数列,它的首项是1,公比是2,求第一个格子到第64个格子各格所放的麦粒数总合就是求这个等比数列的前64项的和。下面我们先来推导等比数列的前n项和公式。

数学必修五教案7篇相关文章:

小学五年级数学工作总结7篇

五年级数学工作总结最新7篇

五年级数学工作总结精选7篇

小学数学五上教学工作计划通用7篇

..是必修课作文7篇

高中物理必修二教学工作计划7篇

小学数学五年级教研计划8篇

小学五六年级数学教研计划5篇

小学五年级数学工作总结精选5篇

五年级下册数学工作总结6篇

数学必修五教案7篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
108015