教案设计应考虑到学科的核心素养,以帮助学生全面发展,通过编写教案,教师能够建立良好的职业网络,以下是大爱范文网小编精心为您推荐的五年级数学上册教案5篇,供大家参考。
五年级数学上册教案篇1
教学目标
知识与技能:让学生结合具体情境认识行与列,初步理解数对的含义;能在具体情境中用数对表示物体的。
过程与方法:使学生经历从已有经验到用数对确定物体位置的探索过程,体验用数对确定位置的必要性和简洁性。
情感、态度与价值观:渗透“数形结合”的思想,发展学生的空间观念。体会生活中处处有数学,产生对数学的亲切感。
教学重点
经历用数对确定物体位置的探索过程,知道用数对表示位置的方法。
教学难点
灵活运用数对知识解决实际问题。
教学方法
直观演示法与自主探索、小组合作的方法。
教学准备
多媒体课件
教学过程设计(含各环节中的教师活动和学生活动以及设计意图)
教学过程
一、创设情境,激趣导入
课件出示主题图,播放动画。
怎样才能既准确又简明地表示张亮同学的位置呢?这节课我们就一起来进一步学习 “确定位置”。(板书:确定位置)
二、探索新知
1、课件出示例1的内容。
(1)学生读题,了解已知信息。
教师引导学生可以根据自己在教室里的位置来思考这个问题。
(2)问:已知张亮同学是第二列、第三行的同学,你能指出谁是张亮同学吗?
学生联系实际的基础上根据图中张亮所在的列数的行数来确定张亮的位置,教师给予肯定。
2、认识数对,学会用数对确定具体情境中的位置。
(1)提出问题(看来用第几列、第几行描述一个人的位置真好,让我们有了一个统一的说法。)
大家觉得用这种方法表示一个人的位置,简炼吗?
师:能不能把这种方法再简化一下?
(2)创造、交流
同学们可了不起,在这么短的时间内,创造出了这么多种不同的表示方法。
这一种是哪个小组创造的?说说你们是怎么想的?
师;不错,既然每个小组都不约而同地保留下了这两个数,说明——?这两个数很重要!
真好!那这里的2和3各表示什么意思呢?
生:……
说得太棒了,数学规则需要统一,想不想知道数学上统一使用的方法,请看先写4,接着打上逗号,然后写3,最后打上括号,因为它们是一个整体。大家知道吗?像这样,用列数和行数组成的一对数,叫做——数对。
书:(2,3)
(4)如果用(2,3)表示张亮同学的位置,你能表示王艳和赵强同学的位置吗?看一看有什么不同?
启发学生思考,引导学生用数对表示位置。
3、游戏中概括提升
我发现咱们班同学学得特别快,下面咱们玩个游戏好吗?
(1)师出生对
我说数对,请符合要求的同学快速地站起来。看谁反应最快!
(3,1)(3,2)(3,3)(3,4)(3,5)
奇怪,怎么就正好站起来这么一排呢?
(2)生出生对
如果让你来出数对,你能让一排同学站起来吗?谁来试试?
生:……
师:也不错!有没有谁能说出点不一样的?
生:(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)
师:发现什么了?能说说为什么吗?
生:……
师:也就是说,数对中的第二个数相同,他们就都在同一行。
(3)师再出
不过,老师还有个本领:只说一个数对,就可能让一排同学都站起来,你们信不信?要不咱试试?
示(4,某)可能是哪些同学?
师:你的数对是?奇怪,我上面写(4,1)了吗?那你为什么站起来?
生:(第一个数是4,表示第4列,第二个数是求知数,所以第4列的每一个同学都有可能)能不能确定,到底是谁?如果某等于3呢,表示的一定是谁?其他同学坐下去,看来,要想确定某一个人的位置,只知道列数行不行?还得知道?(用数对表示位置一定要用到两个数)
师:(某某)又可能是哪些同学?(全班同学都站起来了)。
师:全班同学都有可能吗?某、某表示两个相同的数,你的数对是(?,?),符合吗?不符合的同学请坐下。当某=1、2、3、4、5时,看来(某某)能不能表示全班同学?只能表示什么?只能表示列数、行数相同同学的位置。
三、做一做,巩固确定位置的方法。
1、出示情景。组织学生观察情景,思考教师的提问。
2、引导学生利用在例题中学到的确定位置的方法来回答问题。
3、组织学生用一组数字来表示它们的位置。学生思考后可交流讨论,最后全班汇报。
四、反馈练习。
完成教材第19 页的做一做。
五、课堂小结。
通过今天的学习,你有哪些收获?
五年级数学上册教案篇2
一、学习目标
(一)学习内容
?义务教育教科书数学》(人教版)五年级下册第10页的例2。例2是探究3的倍数特征,教材仍然采用百数表,让学生先圈数,再观察、思考。
(二)核心能力
在探究3的倍数特征的过程中,学会从不同角度去观察和思考,进一步积累观察、猜想、验证、归纳的思维活动经验。
(三)学习目标
1.借助百数表,经历探究3的倍数特征的过程,理解3的倍数的特征,能正确判断一个数是不是3的倍数,并解决生活中的实际问题。
2.在探究3的倍数特征的过程中,学会从不同角度去观察和思考,发展合情推理的能力,积累数学思维活动经验。
(四)学习重点
探索3的倍数的特征。
(五)学习难点
归纳举证3的倍数的特征
(六)配套资源
百数表、计算器
二、教学设计
(一)课前设计
(1)回忆我们研究过的2、5倍数的特征是什么?并能给同学们解释是怎样探究出来的。
(2)自制一张百数表。
(二)课堂设计
1.复习引入
师:谁来给大家介绍一下,2、5的倍数特征是什么?我们是怎样研究出来的?
学生自由发言,重点引导学生回忆知识形成的过程。
小结:我们是利用百数表,先找数,然后观察、猜想,最后进行验证和归纳,得出了2、5倍数的特征。
师:这节课我们来研究“3的倍数的特征”。(板书课题)
?设计意图:通过复习2、5倍数的特征及探求的方法,唤醒学生的记忆,为探求3的倍数的特征做铺垫。】
2.问题探究
(1)找3的倍数
师:研究“3的倍数的特征”,你们准备怎样研究?
生自由发言。
师:你们准备借助百数表,利用研究2、5倍数特征的方法来研究3的倍数的特征,现在拿出你准备的百数表。同桌合作先找出3的倍数,然后观察圈出的数,看看有什么发现?
(2)全班交流、讨论
①发现问题
学生展示圈好的百数表。
师:说说你们的发现?
预设:只看个位不行。
师:为什么不行?
横着看:个位上的数0-9都有,竖着看:个位上的数也是0-9都有。
②分析问题
师:同学们发现,在百数表中(课件出示),横着、竖着观察3的倍数,只看个位上的数,没有规律可循。横着、竖着看,看不出规律,换个角度思考,我们还可以怎样看?只看个位不行,我们还可以看什么?
学生自由发言,引导学生斜着看。
师:大家认为除了横着、竖着看,我们还可以斜着看,现在请你斜着观察3的倍数,你又有什么新发现?
生独立观察、发现。
?设计意图:因为3的倍数的特征比较隐蔽,根据探究2、5倍数的特征的经验,学生发现不了规律。在学生实在没人看出规律时,教师再提示学生可以换一个角度去观察、去思考,接着重新去探索。】
③解决问题
师:把你的发现和根据发现引发的猜想,在小组内交流一下,并想办法来验证你们的猜想。(可以用计算器)
小组合作交流后全班汇报。
(3)归纳3的倍数的特征
师:你们的发现和猜想是什么?
小组汇报,引导学生评价补充。
引导小结:斜着观察发现,每一行数的个位与十位的和分别是3、6、9、12、15,它们都是3的倍数,各个数位上的和是3的倍数,这个数也是3的倍数。
师:这个猜想对不对呢?你们是怎么验证这个猜想呢?
生汇报验证的过程。
师:举什么样的例子既简单又有代表性?
举的例子包含有两位数、三位数、四位数……,多举几个
师:有没有同学发现反例的,各个数位上的和是3的倍数,但是这个数却不是3的倍数。
师:通过验证,你们得出的3的倍数特征是什么,谁再来说一说?
归纳小结:一个数各个数位上的和是3的倍数,这个数就是3的倍数。
?设计意图:经过引导,学生进行二次探索,发现、猜想、验证并归纳出3的倍数的特征,积累数学探究的活动经验。】
3.巩固练习
(1)课本第11页“练习二的第3题”
圈出3的倍数。
92 75 36 206 65 3051 779 99999
111 49 165 5988 655 131 2222 7203
(2)课本第10页“做一做”
(3)小明拿了5个圆片,小军拿个6个圆片,用他们拿的圆片在数位表上摆数,谁拿的圆片摆出的数一定是3的倍数?谁拿的圆片摆出的数一定不是3的倍数?
请说明理由。
先独立完成,然后同桌合作操作验证。
4.全课总结
师:通过这节课的探究,我们获得了什么新知识?采用了什么样的研究方法?
在探究的过程中我们遇到了什么新问题?
小结:通过找数、观察、猜想、验证、归纳的研究方法,得出了3的倍数的特征。
师:为什么判断一个数是不是2或5的倍数,只要看个位数?而判断一个数是不是3的倍数,要看各位上数的和呢?请大家课下阅读第13页的“你知道吗”我们下节课进行交流。
五年级数学上册教案篇3
【教材分析】
本课教学苏教版《义务教育课程标准实验教科书数学》三年级(下册)第56~61页的内容,内容分属于空间与图形领域。《数学课程标准》关于“空间与图形”部分特别强调了内容的现实背景,强调关注学生的生活经验和活动经验。在日常生活中,有很多的轴对称图形,这充分体现了数学知识与生活的密切联系,通过观察生活中的对称,使学生体验“对称美”。通过学生动手创作轴对称图形,在创作中感知轴对称图形的特点,激发学生的兴趣。
【学情分析】
本节的教学对象是小学中年级学生,在此之前学生已经学过一些平面图形的特征,形成了一定的空间观念,自然界和生活中具有轴对称性质的事物有很多,也为学生奠定了感性基础。他们的思维特点是以具体形象思维为主,同时具有初步的抽象思维能力,对于具体、直观的的内容有较大的依赖性。所以,本课尽量营造一种轻松愉悦的氛围,让学生在玩中学,在观察、操作中探索研究,让学生自主探索,在探索中发现,在探索中学习。
【教学目标】
1.使学生联系生活中的具体物体,通过观察和动手操作,使学生初步体会到生活中的对称现象,初步认识轴对称图形的一些基本特征。并初步知道对称轴。
2.使学生能根据对轴对称图形的初步认识,在一组实物图案或简单平面图形中正确识别轴对称图形;能用一些方法“做”出一些简单的轴对称图形。
3.使学生在认识、制作和欣赏轴对称图形的过程中,感受到物体或图形的对称美,激发对数学学习的积极情感。
【教学重点】
理解轴对称图形的特征。
【教学难点】
掌握判别轴对称图形的方法。
【教学准备】:
多媒体课件、剪刀、彩色笔两支、彩色纸。
学生预习:
1.预习书本56-61页,在看书的过程中,把你认为主要的画出来,并反复读一读,想一想是什么意思?
2.在看书的过程中,如有不认识的图形,请上网查一查或向他人询问,知道它的名称,并写在图下
3.生活中哪些物体也具有对称的性质,请你写在横线上。
4.剪下书本第115页的天安门城楼图、飞机图和奖杯图,并对折,把你的发现写下来。
5.搜集一些轴对称的图形,打印出来,并能作简单的说明。
6.搜集一些著名建筑的图片,打印出来。
【教学过程】
一、引入新课
1.今天老师带来了几个物体,我们一起来看看!(出示:天安门、飞机、奖杯)
问:请同学们仔细观察,这些物体的外形都有什么特点? (对折后两边相同、对称、都是轴对称图形)
预设1:左右两边相同。像这样两边大小、形状完全相同的物体,我们可以说是对称的。那怎么来验证呢?(对折)
这些物体都是立体图形,我们不方便直接对折。不过我们可以把它们画下来,得到一些平面图形。现在可以对折了吗?
预设2:轴对称图形(对称)。那你说说你对轴对称图形(对称)的了解?
1.你是怎么理解对称的?怎么验证?(对折)这些对称的物体都是立体图形,我们可以把它画下来,得到一些平面图形。看,现在这些图形还对称吗?(对称)板书:图形是不是所有的图形都是对称的?它们又是怎么对称的?我们又怎么来证明?今天这节课,我们就一起来研究一下。
2.你怎么理解轴对称图形?(学生的回答可能很零碎)
好,那接下来我们就一起来验证一下!
二、教学例题
1.课前让大家剪下了这三个图形并对折了,现在能把你的发现和大家说一说吗?
生交流。(两边是一样的、左右两边大小一样、对称、有一条线、折横、对称线等)
(1)两边的大小一样、对称、完全重合。
问:你是怎么折的?比如说这个天安门图(左右对折)飞机图?(上下对折)
有没有不同的折法?那我可不可以这么折?为什么?(不能完全重合、两边不一样大小)也就是说,轴对称图形对折后两边要——完全重合。
(2)对折后是以前的一半。问:为什么只能看到一半?(两边都重合了)
(3)它们都是轴对称图形。那你是怎么判断的?都是这么折的吗?有没有不同的折法?我这样折可以吗?为什么?
(4)折横、有一条线。若学生说不到,师可这样引导:我们再来看这几个图形,对折后都留下了什么?(一条线——这条线我们叫折痕)那这条折痕所在的直线我们叫——对称轴。对称轴用点划线来表示。画时,先画线,再画点,点和线间隔画。我们可以竖着画,也可以横着画。(黑板上演示)
那你能尝试找出其中一个图形的对称轴并用彩色水笔画一画吗?开始。
生在对折的纸上找一找并画一画。
反馈。画得正确吗?下面画对的同学请举手!真棒!
下面,老师要看看我们同学有没有掌握了。出示图——汽车图形、钥匙图形、桃子图形、蝴蝶图形、青蛙图形、竖琴图形、香港区徽章图。(想2)
你能判断出下面哪些是轴对称图形吗?
交流反馈:这个是轴对称图形吗?为什么?
这个呢?
重点讲解:香港区徽章图。外面完全重合了,里面的图案没有完全重合,所以——不是轴对称图形。
2.教学试一试
轴对称图形其实对我们来说并不陌生,在我们学过的平面图形中也有一些。
出示:你能判断哪几个图形是轴对称图形吗?
交流反馈:哪些是轴对称图形?为什么?(对折后能完全重合)怎么对折的?(上下、左右)有几种折法?(2种)
正方形、长方形:怎么对折的?还有别的折法吗?(还能怎么折?) 师:不管怎么折,只要对折一次后图形能完全重合的,都是轴对称图形。
正五边形是吗?为什么?
着重提出:平行四边形为什么不是?
生拿出平行四边形折一折,小组讨论后,指名说理由。
问:你的想法是怎样的?谁愿意来折一折?
五年级数学上册教案篇4
教学内容:
人教版实验教科书五年级数学上册第五单元。
教学目标:
1、让学生经历看、数、想、剪、移、拼、说等过程探讨平行四边形的面积公式,并能用字母表示,会用公式计算平行四边形的面积。
2、通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透“转化”和“平移”的思想,体会“等积变形”的方法,并培养学生的分析,综合,抽象概括、语言表达和动手解决实际问题的能力。
3、通过活动,激发学习兴趣,培养探索精神,获得成功体验,感受数学与生活的密切联系。
教学重点:
使学生理解和掌握平行四边形面积公式并会应用。
教学难点:
理解平行四边形面积计算公式的推导过程。
教具、学具准备:
平行四边形纸片、剪刀及电脑课件、三角板。
教学流程
(一)创设情境,设疑引入
谈话:出示两个美丽的花坛(课件呈现)。
提问:请大家观察一下,这两个花坛哪一个大呢?
师:这都是你们用眼睛看的不一定准确,我们必须想其他的办法来证明,但不管用什么办法来比较它们的大小,必须知道他们的什么?它们的面积你会算吗?
然后给出长方形的长和宽让学生计算长方形的面积。
提问:那平行四边形的面积你会算吗?从而导入新课。
板书课题:平行四边形的面积
(设计意图:本环节在学生现有知识水平中无法通过计算来比较两个花坛面积的大小,从而激发学生探究知识的欲望,感受数学与生活的密切联系。)
操作探索,获取新知
1.数方格感知平行四边形和长方形之间的关系
(1)数方格,用数方格的方法来求平行四边形和长方形的面积,要求自学完成中间的格子图和表格,最后认真观察这个表格中的数据,看你发现了什么?(电脑出示)
(2)汇报交流自己的发现。
(3)提问:如果我给你一个好大好大的花坛,不用数方格的方法,你能很快地计算出平行四边形的面积吗?
小结:用数方格的方法不能满足我们的实际需要,如果我们能像长方形那样有一个计算平行四边形面积的公式就容易解决了。
(设计意图:本环节主要通过让学生用数方格的方法,初步感知平行四边形与长方形面积之间的联系,同时为下一步的探究提供思路,做好铺垫。)
2、应用“转化”思想,引入割补、平移法.
(1)小组合作探究:想办法充分利用手中的学具把平行四边形转化成已经会计算面积的图形。(这时教师巡视,了解情况)
(2)精彩展示:要求边讲边操作。
提问:为什么都要转化成长方形?
为什么一定要沿着高剪开呢?
接着电脑演示其它方法,渗透割补、平移法
(设计意图:通过让学生亲身经历把平行四边形转化成一个长方形的全过程,为下一个环节建立联系,推导公式起到了一个推波助澜的作用。同时告诉学生学会一种解题方法比做十道题都重要,教会学生“会学”。)
3、建立联系,推导公式
(1)小组合作探索:
a、原来的平行四边形转化成长方形后,什么变了?什么没变?(=)
b、拼成长方形的长与原来平行四边形的底有什么关系?(=)
c、拼成长方形的宽与原来平行四边形的高有什么关系?(=)
d、能否根据长方形的面积公式推导出平行四边形的面积计算公式?(平行四边形的面积=)
(2)交流平行四边形和长方形之间的联系:平行四边形的面积=长方形的面积;长=底;宽=高;平行四边形的面积(公式)=底×高(板书)
提问:用字母怎么表示呢?自学课本81页。
学生回答s=ah(板书)
提问:s、a、h分别表示什么呢?
提问:要计算平行四边形的面积必须知道什么?(演示不是对应的底和高),这样能求出它的面积吗?那底和高必须是什么样的关系?(对应)
(设计意图:本环节主要让学生观察,发现、比较、归纳,从具体到抽象,从感性到理性循序渐进,推导出了平行四边形面积的计算公式,充分尊重了学生的主体地位,突破了难点,解决了关键,发展了学生能力。)
(二)巩固应用,内化新知
a、前面的花坛题
b、课本82页第2题:你能想办法求出下面两个平行四边形的面积吗?
(教师巡视,收集典型的错误,强调书写格式,对应的底和高)。
(设计意图:此练习题量虽然不大,但涵盖了今天所有的知识点,具有一定的弹性,使不同的学生得到了不同的发展,从而进一步内化了新知。)
(四)课堂总结,深化新知
师:同学们,通过今天的学习,你有什么收获呢?
(设计意图:师生共同概括小结,这样会给学生一个系统、完整的印象,不但使本节课有了一个精彩的结尾,而且进一步深化了新知。)
课后反思:
通过认真反思本节课的教学,我从中认真总结了一些成功的经验和失败的教训。
●成功经验
一、注重采用“自主探究、合作交流”的学习方式。
尽可能让学生充分暴露自己的思维过程,进行思维碰撞,发挥小组集体的智慧,进一步出主意、想办法,有效解决问题,体现了数学教育的实质性价值,立足了“基本”,注重了“过程”。
二、注重数学方法和数学思想的渗透。
在本节课中,主要让学生动手操作,亲自感知,利用“割补、平移”法经历了把平行四边形转化成一个长方形的全过程,有效地渗透了“转化”的思想,从而学会了利用旧知识来解决新问题,同时使学生明白学会一种解题方法比做十道题都重要,教会学生“会学”。
三、注重运用现代教学手段辅助课堂教学。
这节课恰当地运用了多媒体课件演示,直观、生动、形象地展现了图形的转化过程及各部分之间的对应关系,充分调动了学生的学习兴趣,提高了课堂教学的效率,是其它教学手段无法比拟的。
●失败教训
一、在教学中个别地方没有给学生留有足够的思考时间。
比如:当追问“为什么要沿着高剪开呢?”这时学生回答不出来,由于担心时间不够,我提示学生想想长方形的特征,如果不急着提示,让学生结合自己转化后的图形多看看、多想想,也许学生自己就能解答。作为教师,学生能自己解决的问题,我们绝不代替。
二、教学中的细节问题注意不够。
例如,发给学生的学具“平行四边形”就忘记在四周描上一个边框,只是在课件上有所显示,从而不利于教学平行四边形与转化后的长方形之间的联系。特别在讲这些平面图形的周长时,如:教学圆的周长时,如果不描,那只是圆的内部,而不是圆的周长。因此,细节不容忽视。
总之,教学为我们留有了缺憾,有了缺憾,并不可怕,关键是我们必须认真反思总结,从缺憾中走出来,化缺憾为精彩!
五年级数学上册教案篇5
教学目标:
1、在实际情境中,认识计算梯形面积的必要性。
2、在自主探索活动中,经历推导梯形面积公式的过程。
3、能运用梯形面积的计算公式,解决相应的实际问题。
教学重点:理解并掌握梯形面积的计算公式。
教学难点:理解梯形面积计算公式的推导过程。教具准备:各种梯形各两份,剪刀,课件。
教学过程:
一、揭示课题,明确主题
1、生活中我们能找到许多平面图形,这个教室里有吗?
2、请大家看看这组图片,看看你发现了谁?找到了就立刻喊出它名字!出现次数最多的是……?(梯形)板书2、梯形,四年级的时候我们已经认识它了,谁来介绍一下它。
3、今天,我们来更深入地了解这位朋友,研究梯形的面积。(板书)
二、回忆旧知,建立联系
1、面积,我们现在已经会计算哪些图形的面积了?他们计算方法你们还记得吗?(课件)
2、回忆一下,平行四边形和三角形的面积计算方法我们是怎样推导出来的?还记得吗?
3、同学们,我们在研究它们面积的计算时候,都用到了一种非常重要的数学思想——转化。(板书)把要研究的图形转化成已经学过的图形来发现他们之间的联系,进而推导出面积计算的公式、这种思想,这节课我们也要用到。
三、转化梯形,推导公式
(一)应用的需要引出猜想1、同学们喜欢什么体育运动?喜欢篮球吗?(课件出示篮球场地)你们知道这一处是什么区域吗?这是3秒钟限制区,是限制对方队员在这个区域内停留不能超过3秒钟。
2、但是梯形面积的计算方法我们还没有学过,你猜想梯形的面积可能与什么有关?你想怎样推导出梯形面积的计算方法呢?
3、同学们都很有想法,那到底是不是像同学们想的那样呢?让我们来动手验证一下。在动手操作之前,老师提出三点建议:(1)想想能把梯形转化成学过的什么图形。
(2)根据转化图形与梯形的关系,推导出梯形面积计算的方法。
(3)填写好汇报单,比一比,哪个小组的动作快。明白了吗?开始吧!
(二)小组活动十分钟
(三)汇报
1、刚刚同学们把梯形转化成了多种图形!现在让我们请这几个小组的同学说说他们的想法。大家注意听,你们的意见相同吗?你还有补充吗?汇报:平行四边形:两个怎样的梯形可以拼成一个平行四边形?还有的同学拼成的是长方形,让我们来看看他们是怎么拼的。正方形是特殊的长方形,那你们的推导的结果应当是一样的。是吗?
2、师:同学们,观察这些图形,无论长方形还是正方形,都是……。再看,(移动图形)你发现什么了?过渡:看来,只要是两个完全相同的梯形,就能拼成一个……、(板书)平行四边形的面积我们学过:……(板书)然后我们就可以根据两种图形间的联系来推导梯形的面积了。谁来帮老师梳理一下。平行四边形的底就是梯形的………、,平形四边形的'高就是……,所以梯形的面积……为什么除以2?
3、刚才展示的都是拼组的方法,还有些同学只用一个梯形就完成了任务,他们用了分割的方法。你们都看懂了吗?请这个小组的同学来简单说说你们是怎么推导的。你们小组的方法真独特!方法不同,那你们推导的结论呢?
4、总结:同学们真爱动脑筋,想出了这么多不同的方法。但这些方法都有共同点。谁来说说?
5、是不是这样啊?那大家就一起把我们用“转化”的方法推导出的梯形面积公式读一读吧!(课件)如果用字母表示你会吗?
6、在这个公式中,哪里应该引起我们注意呢?在计算的时候一定不要忘记。四、加深理解,巩固新知。
1、 总结:好了,同学们,刚刚大家用学过的知识,通过拼合,分割,旋转,平移等方法,把梯形转化成了学过的图形,根据图形间的联系就推导出了梯形面积的计算方法。
2、这个方法你们记住了吗?那老师可要考考你了!(判断题)
3、通过刚刚的研究和辨析,相信大家对梯形面积的计算方法一定有了深刻的理解吧!这个三秒限制区到底多大呢?你会求吗?需要什么条件?(课件出示)动笔试试吧。
4、梯形面积的计算方法在生活中经常用到,你们想用新知识来解决一些生活中的问题吗?
5、梯形面积的计算方法在生活中还有更广泛的应用,小到…、、大到…、、都会用到它。
五、结语
转化在数学当中是一种非常重要而又常用的思想。在图形的学习中,同学们多次用到了转化的策略,(课件)其实在学习计算时我们也用到了。那我们转化的目就是化未知为已知。以后你再遇到一个未知的新问题,你会怎样想呢?是不是任何未知的问题都可以转化呢?这个问题留给同学们去思考。
五年级数学上册教案5篇相关文章: