教案需关注课堂氛围的营造,以促进学生之间的积极互动与合作,教案设计应考虑到学科的核心素养,以帮助学生全面发展,以下是大爱范文网小编精心为您推荐的五年级数学上册教案优质7篇,供大家参考。
五年级数学上册教案篇1
教材分析:
“质数和合数”是九年义务教育小学数学五年级(上)第一单元的内容,在教材第10~11页;是学生学习了因数和倍数的意义,了解了2、5、3倍数的特征之后的重要知识,它是学生学习分解质因数、求公约数和最小公倍数的基础,在本章教学中起着承前启后的重要作用。
教学目标:
1、使学生根据因数和倍数的意义,会判断一个数是质数还是合数;
2、培养学生观察、比较、概括和判断能力;
3、向学生渗透“对立统一”的辨证唯物主义观点。
教学重点:
理解质数和合数的意义。
教学难点:
正确判断一个数是质数还是合数。
教学准备:
课件
教学教法:
新课程的数学教学强调:要培养学生用数学眼光、数学知识、方法去分析事物,思考问题。本课我主要采用“探究性学习指导法”,把“有意义的思考方法和习惯思维”放在教学首位,构建探索型的教学模式,充分体现“以学生发展为本”的教育理念。
教学过程:
一、谈话引探,导入新课。
如:(1)、用哥德猜想引出课题。
(2)、结合自然数1—20的因数具体说说。(这样直奔主题的教学,为学生探究知识和巩固知识留下了足够的时间和空间。)
二、自主学习,探究新知。
首先让学生利用课件很快找出1~20各数的因数,铺垫探底。然后讨论怎样给这些数进行分类,怎样分比较合理?(把学生的思维导向于有意义的思考。)学生根据所学的知识有按偶数、奇数分的,有按2、3、5的倍数分的、也有按10以内、10以外的数分的等等,对于学生的分法,教师给于了鼓励,引导学生看书上怎么分的,观察因数的个数,以 “因数个数”的多少来分,学生很快以“只有一个约数的、只有两个约数的、有两个以上因数”分为三类。教师及时出示课件,然后让学生列举出相应的数。这时教师明确告诉学生;像2、3、5、7、11这样只有两个因数的数就叫质数。让学生通过观察每个质数的因数特点概括出质数的意义,并且要求学生按照质数的意义自己找出一些质数,找准确了说说找质数的方法(突出教学的重点)。同样道理,合数的意义就迎刃而解了。紧接着让学生看一个因数的数是谁?书上是怎么给它下定义的?然后出示一些数,让学生判断哪些数是质数?哪些数是合数?判断正确了让同学们互相交流判断方法,为什么又对又快?(从而突破教学难点。)
三、应用知识、巩固知识。
1、让学生根据学习资料,把1~20这20个数按照奇数、偶数、质数、合数进行分类,分类完成之后互相交流这些数之间的联系和区别。如2既是质数又是偶数;9、15既是奇数又是合数。(既巩固了新知识,又加强了知识之间的横向和纵向联系。)
2、出示闯关题,有填空、选择、判断、游戏,内容丰富、形式多样,闯关成功给予奖励。(目的是激发学生的学习兴趣,提高学习效率。)
3、小组合作学习制作100以内质数表,课件出示学习要求
(1)独立思考制作方法
(2)小组交流方法
(3)动手制作
(4)汇报展示。
4、课件出示100以内质数表,学生熟记。(便于今后的应用。)
5、 全课总结、课外延伸。
师生共同回忆这节课所学知识之后听一则数学信息。歌德猜想之一:任何一个大于4的偶数,都可以写成两个奇数(或素数)之和。并让学生了解到这个猜想目前证明得的是我国数学家陈景润,可惜离成功只差一步便离开了人世。听完后谈感想。(让学生的学习动机、学习兴趣、情感价值观得到进一步的提升。)
五年级数学上册教案篇2
教学内容:
北师大版小学数学五年级上册第82——83页的内容。
教学目标:
1、结合具体的图形,明确什么是“点阵”,了解点阵的基本知识。
2、能在具体的观察活动中,发现点阵中隐藏的规律,体会图形与数的联系。
3、培养学生观察、概括与推理的能力。
4、了解数学发展的历史,感受数学文化的魅力。
教学重点:
通过观察活动,引导学生探索发现“点阵”中隐藏的规律。
教学难点:
能从不同的角度观察到点阵图形的不同排列规律,并能把观察到的规律用算式表示出来。
教学准备:
(师)多媒体课件;(生)彩笔。
教学过程:
一、谈话引入
(老师在黑板上画点)今天给大家请来了一位图形朋友——点,不要小看了这个小小的点,早在2000多年前,古希腊的数学家们就是从这样一个小小的点开始研究,发现了由许多个这样的点组成的点子图形中的规律,还给这些图形取了一个好听的名字,叫点阵。同学们想不想过一把当数学家的瘾,自己来寻找这些规律?今天,我们就一起来探究点阵中隐含的规律。(板书课题:点阵中的规律)
二、探究正方形点阵中的规律
1、探究正方形点阵的规律。
(1)我们一起来看看数学家们当年研究的点阵图,边看边说出各个点阵的点子数。
教师依次出示前四个正方形点阵图,并逐步引导学生想像、猜测:下一个点阵图会是什么样子呢?
(随着点阵图的依次出现,学生的思维逐渐活跃,当第三个点阵图出现的时候,学生已经忍不住地说出了点数。说明学生已经发现了正方形点阵中的规律。但这时,教师没有急于让学生发表自己的看法,而是给学生留出了完善自己想法的时间,同时也暗示学生:规律的呈现不能依靠一个或几个图形来归纳,应该有耐心地继续自己的观察活动。)
(2)除了能说出各个点阵的点数之外,仔细观察点阵图:你还有什么其它的发现?
(学生能够发现各个点阵的形状是正方形的,还能用1×1、2×2、3×3、4×4这样的算式来表示每个点阵的点数。)
(3)根据刚才发现的规律,想:第五个点阵是什么样子,独立画出来,并用算式表示点数。
(学生独立画出第五个5×5的点阵图)
(4)思考:照这样的规律继续画下去,第100个点阵的点数如何用算式来表示?第n个呢?
(结合发现的规律,引导学生逐步完善自己的想法,建立总结正方形点阵规律的模型。)
小组讨论:你觉得每个正方形点阵的点子总数与什么有关系?
(学会用简单的语言表述自己的想法,使得初步的形象感知得到提升)
小结:每个正方形点阵的点子总数可以看作是一个相同数字相乘的积,这个数字与点阵的序号有关,与每个正方形点阵每排的点子数也有关系。
2、刚才我们研究了一组正方形点阵中隐含的规律,那么对于同一个点阵来说,如果划分的方法不同,所呈现的规律也就不同。
(1)请大家仔细观察第五个正方形点阵中点的划分方法,你能发现什么规律?
学生会有如下发现
①是用折线划分开的。
②每条线内的点分别是1、3、5、7、9。
③这个正方形点阵的点数就可以表示为:1+3+5+7+9=25。
(2)如果把每条线所包围的点子数记下来,如何用算式来表示?
第一条线: 1 = 1;
第二条线: 1+3 = 4;
第三条线: 1+3+5 = 9;
第四条线: 1+3+5+7 = 16;
第五条线: 1+3+5+7+9 = 25;
(3)每条线所包围的点子数与前面研究的一组正方形点阵的点子数有什么关系?(正好是第一到第五个点阵的点子数。)
(第二、三个问题需要老师引导,学生自己难以发现,尤其是第三个问题,学生很难想到它们和开始时依次出现的几个正方形点阵的点数之间的关系。当学生想不到这种联系时,是否一定要引导?)
(4)思考:表示这个正方形点阵的点数的`算式有什么特点?
(这个点阵的点子总数可以看作是连续奇数的和。)
(5)如果按这样的划分方法划分第六个正方形点阵,它的点数该如何表示?
1+3+5+7+9+11 = 36;
(6)前面老师是把这个5×5的正方形点阵用折线进行了划分,你们还有哪些不同的划分的方法?在用算式表示上有什么规律?
学生的划分有以下几种
①横向划分:用算式表示为5+5+5+5+5;
②竖向划分:用算式表示为5+5+5+5+5;
③斜向划分:用算式表示为1+2+3+4+5+4+3+2+1;
至于前面两种方法,都可以简单地表示为:5×5;重点引导学生讨论第三种划分方法,观察这个算式,你们发现了什么?
学生的发现如下
算式里最大的数是5;
从1开始加到5再加回到1;
这个算式是两边对称的;
这个点阵的点数是中间那个数字5乘5的积;
教师引导:照这样的规律类推,第六个正方形点阵的点数如何表示?第9个呢?第n个呢?
(在这里把寻找不同划分方法的任务交给学生,既是学生前面探究过程思维的延续,又体现了学生学习的自主性,还用另一种方式解读了“练一练”中的第一题。培养了学生从不同的角度去发现问题,总结概括规律的能力。)
三、延伸应用,形成策略
1、除了我们刚才研究的正方形点阵,请大家猜猜看,还会有什么形状的点阵呢?
(学生列举了长方形点阵、三角形点阵、圆形点阵、椭圆形点阵等等。)
2、请大家尝试运用前面学会的方法探究长方形点阵规律。
(1)小组合作研究:如何用算式表示每个长方形点阵的点子数?
学生通过讨论很快达成共识
1×2;2×3;3×4;4×5;
(2)请你独立画出第五个长方形点阵并用算式表示出点数。
(学生独立画图并写出算式,互相交流。)
算式表示为:5×6;
(3)思考讨论:你们觉得自己所写的算式中的数字与图形中的点子之间有什么关系?
(学生的发现为:乘法算式中的第二个因数总是比第一个因数多 1,第一个因数是长方形点阵的竖排点数,第二个因数是长方形点阵的横排点数。并没有发现第一个因数与点阵序号间的关系,因此,当要求他们写出18个点阵的点数时,出现了两种不同的答案:17×18、18×19。在争论各自的理由时,学生的注意力才联系到了点阵的序号与算式的关系,从而确定了正确答案。)
(4)照这样继续写,你能写出第n个长方形点阵的点数吗?
学生可以很顺利地写出:n×(n+1)。
3、看来对于任何一个点阵,只要我们认真观察研究,总能发现其独特的规律。在小组内研究三角形点阵中的规律,要求
(1)个人思考活动:观察给出的四个三角形点阵的规律,画出第五个三角形点阵。
(2)小组讨论:对自己画出的第五个三角形点阵进行划分,你能想到哪些不同的划分方法?分别用算式表示点数。
(学生活动)
全班交流
划分一:横向划分,1+2+3+4+5=15;
划分二:竖向划分,1+2+3+4+5=15;
划分三:斜向划分,1+2+3+4+5=15;
划分四:折线划分,1+5+9=15;
(对于前面的三种划分方法,都在我的预设之内,学生到此,已经很轻松地用语言表述出自己的想法:这样的三角形点阵的点数是从1开始的连续自然数的和。而对于第四种划分方法,是我没有想到的。有一个孩子却用非常强烈地要求,表达了自己的这种划分方法,并且说出了这个算式依次递加4的规律。)
4、同学们真了起!真正具有未来数学家的风范,用自己的聪明才智,发现并总结了各个不同的点阵图中隐藏的规律。那么你觉得应该从哪些方面来探究点阵的规律?
学生交流
仔细观察点阵的形状;
数清每一行的点子数;
看清前后两个点阵的变化……
(在这里不需要学生说出多么专业的、深奥的数学原理,只是引导学生对自己探究性学习方法的一个总结,尽管语言可能不够简练,总结不够到位,只要学生用自己的语言在表述,就是对学生思维训练的一个提升,一种飞越。)
四、课堂总结
1、点阵的知识在生活中有着广泛的应用,比如北京奥运会开幕式上的“击缶表演”、“太极表演”等,都是把一个人看作了一点,来排列有规律的队形。你还知道什么地方运用了点阵的相关知识?
五子棋、阅兵式的方队、节日的花坛……
2、课后继续搜集点阵的相关资料,下节课继续交流。
(在这里,把学生的课堂学习延伸到生活,链接到学生已有的相关生活经验,然后让学生在生活中继续寻找哪里用到点阵的知识,体现了数学与生活的密切联系,数学来源于生活,又应用于生活。)
五年级数学上册教案篇3
【单元学情分析】
本单元是在学生认识了整体“1”,初步理解了分数的意义,能认、读、写简单的分数,会简单的同分母分数加减法,能初步运用分数表示一些事物以及解决一些简单的实际问题的基础上,进一步认识和理解分数。
【单元教学目标】
1、结合具体情景与直观操作,体验分数生产的实际背景,进一步理解分数,能正确用分数描述图形或简单的生活现象
2、认识真分数、假分数,理解分数与除法的关系,能正确进行假分数与带分数、整数的互化。
3、探索分数的基本性质,会进行分数的大小比较。
4、能找出10以内两个自然数的公倍数和最小公倍数,能找出两个自然数的公因数和最大公因数,会正确进行约分和通分。
5、体会分数与现实生活的联系,初步了解分数在实际生活中的应用,提高综合运用数学知识和方法解决具体问题的能力,能运用分数知识解决一些简单的实际问题。
6、能积极参与操作活动,主动地观察、操作、分析和推理,体验数学问题的探索性和挑战性。
【单元重难点】
1、分数与除法的关系、分数的基本性质、公因数与公倍数、约分与通分、比较分数大小等知识;难点:体会在不同整体下,同一分数表示的具体数量不一样的道理及分数的基本性质。关键:联系实际情境、借助直观,弄清分数与除法的关系。
2、学习分数的再认识、分数与除法的关系、真分数与假分数、分数的基本性质、公因数与公倍数、约分与通分、分数的大小比较等知识。
3、学生善于形象思维,不善于抽象思维,对分数有一些现成的经验,对于分数的认识系统的认知。
【课时安排】
共22课时
分数的再认识(一)
【教学目标】
1.在具体的情境中,进一步认识分数,发展学生数感,体会数学与生活的密切联系。
2.结合具体的情境,进一步体会“整体”与“部分”的关系。
【重点难点】
体会一个分数对应的“整体”不同,所表示的具体数量也不同。
【教具准备】
课件两盒铅笔
【教学过程】
一、谈话引入,教学新课。
现场组织活动:请两位同学到台前,每人分别从一盒铅笔中拿出1/2,结果两位学生的结果不一样多,一位学生拿出的是4枝,另一位学生拿出的是3枝。
师:这里有两盒铅笔,你能从每盒铅笔中分别拿出全部的1/2吗?其他同学注意观察,你发现了什么?
师:你准备怎么拿呢?
生1:我准备把全部的铅笔平均分成2份,拿出其中的一份就是1/2。
生2:我准备把全部的铅笔除以2,也就是平均分成2份,其中一份就是1/2。
学生活动,一位学生拿出3枝笔,另一个学生拿出4枝笔。
师:你发现了什么现象,你有什么疑问,或者说你能提出问题吗?
生:他们拿出的枝数不一样多,一个是3枝,一个是4枝,这是为什么呢?
师:他们两人都是拿全部铅笔的`1/2,拿出的铅笔枝数却不一样多,这是为什么呢?请想一想,然后小组交流一下。
学生小组交流,再全班反馈。
生:我们认识两盒铅笔的总枝数不一样多。
生:有可能数错了。
师:现在大家的意见都认为是总枝数不一样,也就是整体“1”不一样了吗?
师:告诉大家总枝数是多少,1/2是多少枝。
生1:全部是8枝,1/2是4枝。
生2:全部的铅笔是6枝,1/2是3枝。
师:真的是不一样多,一盒铅笔的1/2表示的都是把一盒铅笔平均分成2份,其中的一份就是1/2。但由于分数所对应的整体不同(也就是总枝数不一样多),所以1/2表示的具体的数量也就不一样。
师:原来分数还有这样一个特点,你对它是不是又有了新的认识?
二、练一练
1.看数学书说一说,小林和小明一样多吗?笑笑和小红一样多吗?说说理由。
2.画一画,说说画法对吗?为什么?还有别的画法吗?
三、巩固练习:
1.独立完成1、2、3,然后选几题说说思考过程。
2.第4题让学生充分说说自己的想法,必要时可以举例说明。第5、6题独立完成,然后选几题说说思考过程。
四、思考题。放学后独立完成,课后讲评。
五、课堂作业
板书设计:
分数的认识
8支铅笔装1盒1/2盒=4支
6支铅笔装1盒1/2盒=3支
教学反思:
本节课注重结合实际展开教学。从这节课中可以看出,学生的生活经验,知识基础已成为教师教学的重要资源。本节课注重动手操作,自主探索,合作交流,让学生经历探究过程。在本课的教学中,注重为学生创设自主探索的空间,学生通过拿水性笔,画一画,分数小游戏,辩一辩等活动,体会到解决问题策略的多样性。
由于分数所对应的整体不同(也就是总枝数不一样多)两人都是拿全部铅笔的1/2,拿出的铅笔枝数不一样多。平时教学中还要多举些例子,可以培养学生对整体“1”的认识,为较难的分数应用题做好铺垫。
五年级数学上册教案篇4
教材分析
本节课的设计思想完全遵循课程大纲按课时要求编写教案,它以素质教育为指导思想,采用现代的教学方法,结合学生的年龄和心理特点,力求做到重难点突出,精心的教学设计。
学情分析
在学习了求积的近似数的方法、小数除法后,学生再来学习本节课的内容,不会感到太困难。教师尽可能的创造学生互相学习、互相讨论的机会,发挥学生的主观能动性,让每位学生突破自己,展示自己,同时应重点引导学生能根据实际情况进行正确地分析,选择正确的方法取商的近似数。同时,引导学生善于观察、发现求商的近似数的简便方法。
教学目标
1.知识与技能:
(1)使学生理解商的近似值的意义。
(2)掌握“四舍五入法”取商的近似值的方法,能正确的按题意求商的.近似值。
2.过程与方法:能根据实际情况进行求近似值。
3.情感、态度与价值观:培养学生数学知识,在实际生活中灵活应用的能力。
教学重点和难点
1、教学重点:理解商的近似值的意义,掌握“四舍五入法”取商的近似值的方法。
2、教学难点:能根据实际情况求商的近似值。
教学过程
一、复习导入
1.口算。
0.63÷7 0.24÷0.3 0.65÷0.13
72÷144 1.44÷0.6 5.6÷0.08
2.按“四舍五入”法,将下列各数保留一位小数.
1.483 5.347 8.785 2.864
3.按“四舍五入”法,将下列各数保留两位小数.
7.602 4.003 5.897 3.996
做完第2题后,要让学生说明其中小数末尾的“0”为什么不能去掉.
二、探索新课
1.教学教科书p23页例7.
(1)出示例题7.(提问学生:一打是多少个羽毛球?)
(2)要求根据书上提出的信息列式计算.列式 19.4÷12
(3)依据 单价=总价÷数量
(4)依据题意要求,取商的近似值。
2.小结:
在日常生活中,小数除法所得的商也可以根据需要,采用“四舍五入法”保留近似值,保留时,一般只除到需要保留的小数位数多一位就可以四舍五入了。
三、巩固练习:
1.求下面各数的近似数:
3.81÷7 32÷42 246.4÷13
2.做第23页“做一做”中的题目.
(1)教师让学生独立按要求进行计算,巡视时,注意学生计算时取商的近似值的做法对不对.做完后,让学生说一说按照不同的要求,取不同的商的近似值是怎样求出来的?(计算出商的小数的位数要比要求保留的小数位数多一位,再按“四舍五入法”省略尾数.)
教师问:你解题时用了什么技巧?
(2)集体订正
四、课堂小结:
(1)提问:今天我们学了那些内容?你有那些收获?(出示课题:商的近似值)
(2)求“商的近似值”与求“积的近似值”有什么相同点,又有什么不同?
将学生分成6组,每组4人,合作探究,互相交流,探讨真知。
然后让各小组汇报交流,达到生与生的交流,师与生的交流。
随后,教师进行总结。
相同点:都要用到“四舍五入”法取近似值,并且都要看要保留的那一位的后一位.
不同点:求积的近似值,要先算出积的准确值再求近似数,求商的近似值不需求出商的准确值,只要求出要保留的下一位就可以了
五、布置作业:
练习四第10、11、13题。
五年级数学上册教案篇5
一、复习
1、3.6×0.47.25×0.8板演
2、把240缩小10、100、1000、10000是()
同步口答追问指出:移动小数点位数不够添0补足。
3、评议追问算法随即揭题
二、新课
1、例30.36×0.24
试算集体评议比一比一样对吗?追问:为什么积的十分位上是0?
你能用交换因数位置的方法验算吗?
结果怎样?说明什么?
2、例4小明体重35.5千克,爸爸体重是小明的1.8倍,爸爸体重多少千克?
集体读怎样列式?为什么用乘法?35.5×1.8表示什么意思?
估计积比35.5大还是小?为什么练习简评
3、香蕉买多少元?
每千克3.6元
师引出第一条规律,生说规律2、3。
一个大于0的`数乘,积这个数
应用规律比较大小
3.2×0.8○3.2
0.56×1○0.56
0.63×1.1○0.63
0.9×2.7○2.7
三、练习
练一练1
练一练2
四、收获
五、作业
五年级数学上册教案篇6
教学目标:
1、通过创设问题情境,使学生在解决实际问题的过程中理解除数是整数的小数除法的算理,学会除数是整数的小数除法的计算方法。
2、在探索除数是整数的小数除法的计算方法的过程中,感受转化的思想方法,发展初步的归纳、推理、概括能力,培养估算意识和解决实际问题的能力。
3、就解决实际问题的过程中,进一步了解三峡工程的宏伟,激发热爱祖国的情感,增强学习数学的积极性和自觉性。
教学重点:
理解并掌握除数是整数的小数除法的算理和计算方法。
教学难点:
正确理解补0继续除的算理。
教学准备:
小黑板
教学过程:
一、谈话导入,激发学习热情。
师:同学们,你知道世界上建筑规模最大、施工难度最大、年发电量最多、防洪效果最为显著的水利工程是什么吗? 在学生充分回答的基础上板书课题:三峡水利工程。(幻灯片展示三峡工程的宏伟场面)
师:1994年12月14日,举世瞩目的长江三峡水利枢纽工程正式开工。到20xx年6月1日,三峡大坝正式蓄水。
二、创设问题情境,收集信息、提出问题、解决问题。
1、课件创设情境。
师:这是三峡工程中五级船闸的平面图。
2、收集信息,提出问题。
师:请同学们独立阅读图中的数学信息,比一比谁的收获最多?(学生独立获取信息)
师:通过阅读你知道了什么?(学生交流图中的数学信息)
师:根据这些数学信息,你能提出哪些有价值的数学问题? 生可能会提出。
①水位平均每天上升多少米?
②游轮平均每时航行多少千米?
③游轮通过每级船闸的平均时间是多少小时?
④三峡电厂平均每天发电多少亿千瓦时?
3、自主探究,解决问题。
(一)水位平均每天上升多少米?
师:我们首先来解决水位平均每天上升多少米?谁会列算式?
生:9.843=
师:为什么用除法计算?(引导学生回顾除法的意义)
师:用什么方法能找到这个问题的答案呢?(学生先独立思考,再小组交流算法)
①估一估:水位平均每天大约上升多少米? (学生可能会这样估算:9.849,93=3)
师:平均每天上升的水位比3米多还是比3米少呢?(引导学生明白因为9.84米比9米多,所以平均每天上升的水位一定比3米还多一些)
②知识迁移。
师:用以前学过的整数除法能不能帮助我们算出最终的结果呢?(学生独立思考) (学生可能会想到:9.84米=984厘米,9843=328(厘米),再把328厘米转化为3.28米)
③列竖式算: 先学生独立尝试探索并思考。
⑴每次除得的商写在什么位上?为什么?
⑵每次除得的商与除数的积表示( )个( )。
⑶和整数除法有什么异同?
再小组讨论,最后集体交流算法,结合学生的回答过程,教师板书,并同时质疑:9除以3商3,商写在什么位上?33等于9,9表示几个几?商的小数点应该怎样写?8表示几个几,8除以3商2,商应该写在什么位上?2乘3等于6表示几个几?当十分位上的余数2比除数小,不够除该怎么办?24表示几个几?24除以3商是8,8应该写在什么位上?
④小结:小数除以整数与整数除法的计算方法基本相同,也是除到被除数的哪一位商就写在一位上。不同的是商的小数点一定要与被除数的小数点对齐。
(二)游轮通过每级船闸的平均时间是多少小时?
①理清思路,列出算式:2.55
②学生尝试独立计算。
③教师设疑:通过试算,你发现2.55与9.843的计算过程有什么不同?学生汇报:计算2.5.5时,被除数个位上的数比除数小,商的个位就不够商1,应该在商的个位写0补位。
④用验算的方法来验证商的结果是否正确。
(三)平均每天发电多少亿千瓦时?
①理清思路,列出算式:24.925
②学生尝试独立计算。
③教师设疑:在计算过程中你又有什么新发现?学生汇报:24个十分之一用25除,不够除,怎么办?
(根据小数的基本性质,当24个十分之一用25除,时不够商1个十分之一,把24个十分之一看成低一级单位的数,再添0,是240个百分之一,再继续除)
④巩固练习:小电脑你会计算132吗?
(四)总结
除数是整数的小数除法计算法则
师:通过解决三峡工程中的数学问题,谁能说一说小数除法的计算方法? (除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0再继续除)
三、自主练习,巩固应用。
1、第107页第1题,应用小数除法解决实际问题,既巩固计算方法又进一步理解了除法的意义。
2、独立计算第2题,教师巡视知道算法有困难的同学。集体订正时,强调小数除法应该注意的问题。
3、第5题:巩固除数是整数的小数除法中的计算难点。教师可先让学生独立完成,教师在巡视时及时发现学生普遍存在的问题,引导学生讨论,纠正。
4、第9题:火眼金睛辨对错。
5、第3、6题,学生独立分析问题并列式解答。
四、课堂总结。
1、今天,我们学习了什么知识?
2、讨论:计算小数除法时,商在什么情况下小于1?
五年级数学上册教案篇7
教学目的:
1、整理小数乘法和除法的计算法则。
2、理解小数乘法和除法的结果与第二个因数和除数的关系。
3、能进行小数乘法和除法的简便运算。
4、理解循环小数的意义,会用循环小数表示商。
5、能用进一法和收尾法解决简单的实际问题。
教学过程:
一、概念回顾。
1、小数乘法和除法的计算方法与整数乘法和除法的计算方法有什么相同点和不同点?
2、计算小数乘法和除法要注意什么?
3、计算结果有几种取近似值的方法?
4、什么叫循环小数?
二、在判断中辨析概念。
1、两个因数都是两位小数,它的积是两位小数。
2、m×0.98的积一定小于m.
3、3.636363是循环小数。
4、2.5×17+2.5×13=2.5×(17+13)运用了乘法结合律。
5、小毛看一本120页的故事书,每天看35页,要看4天。
三、在计算中理解法则。
3.25×4.83.6÷0.25
四、简便计算。
0.25×32×1.252.85×5.2+2.85×5.8-2.85
3.6÷0.25÷0.43.69-(1.69-5.8)
五、在运用中掌握方法。
1、李老师用200元买字典,每本48.5元,可以买几本?
2、工地上有160吨货物,用载重8.5吨的汽车要运多少次?
六、作业。
1、总复习第1、2题。
2、练习二十五第1---5题。
板书设计:
课后记:
第二课时
课题:观察物体和多边形的面积。
复习目标:
1、能从观察不同的角度观察物体,并画出平面图。
2、回顾三角形、平行四边形和梯形的面积公式的推导过程,并能灵活运用公式解决问题。
3、能运用公式解决生活中的实际问题。
4、会计算组合图形的面积。
复习过程:
一、基础再现:
s=abs=ahs=ah÷2
s=(a+b)h÷2
二、基本练习
1.一个长方形框架,拉成一个平行四边形后,()不变,()变小。
2.两个一样的梯形可以拼成一个(),它的底边等于梯形的()。
3.一个三角形的面积是60米,底边是12米,高(),与它等底等高的平行四边形的面积是()
4.一个三角形和一个平行四边形面积和底边都相等,三角形的高是12厘米,平行四边形的高是()
5.想法计算图形的面积。
6.一块梯形的果园,上底是250米,下底是350米,高100米,平均每公顷收苹果2.5吨,这个果园可以收多少苹果?
三、作业
1.总复习第6、7、8题。
2.p124第7、8、9、10、11题。
板书设计:
课后反思:
第三课时
课题:简易方程
复习目标:
1.会用字母表示数、数量、定律和计算公式。
2.理解方程的意义,会判断方程。能解方程并验算。
3.能用方程解决实际问题。
复习过程:
一、概念回顾。
1.什么叫做方程?等式与方程有什么区别和联系?什么叫做方程的解和解方程?
2.用字母表示数应该注意什么?
3.用方程解决问题的步骤是什么?
二、基本练习:
1.方程0.6x=3的解是()
2.a与b的和的一半是()。
3.梯形面积计算公式用字母表示是(),乘法结合律用字母表示是()。
4.判断。
(1)a×b×8可以简写成ab8。
(2)x+5=4×5是方程。
(3)方程一定是等式。
(4)a的立方等于3个a相加。
(5)a÷b中,a、b可以是任何数。
5.解方程。
10.2-5x=2.23×1.5+6x=335.6x-3.8=1.8
3(x+5)=24600÷(15-x)=200x÷6-2.5=1.1
6.解决问题。
(1)一个三角形的高是6米,底是20米,求面积。(用公式计算。)
(2)妈妈有200元钱,是小红的4倍多20元,小红有多少元?
(3)爸爸的年龄比儿子大32岁,是儿子年龄的9倍,爸爸和儿子各多少岁?
(4)学校买10套课桌用500元,已知桌子的单价是凳子的4倍,每张桌子多少元?
三、作业。
板书设计
课后反思:
第四课时
课题:可能性和编码
复习目标:
1、认识简单的可能性事件。
2、会求简单事件发生的可能性,并用分数表示。
3、通过日常生活中的一些事例,使学生初步体会数字编码思想在解决实际问题中的应用。
4、让学生学会运用数进行编码,初步培养学生的抽象、概括能力。
一、基本练习。
1、盒子中有红、白、黄、绿四种颜色的球各一个,只取一次,拿出红色球的可能性是多少?白色呢?
2、商场促销,将奖品放置于1到10号的罐子里,幸运顾客有一次猜奖机会,一位顾客猜中得奖的可能性是多少?
3、盒子中有红色球8个,蓝色球10个,取一次,取出红色球的可能性大还是蓝色球?
4、说出下面各组数据的中位数。
(1)35896
(2)25141318201
(3)姓名李明陈东刘云马刚王明张炎赵丽
成绩/米6.84.75.84.74.64.13.2
5、介绍你自己的身份证号码,并说出各数字代表什么意义?
6、游戏:妈妈的卡片写有2、3、4、5、6,妹妹的卡片写有1、8、9、10、7,
(1)每人任意出一张,有多少种可能?
(2)每人出一张,和为单数妈妈胜,和为双数妹妹胜,这公平吗?为什么?
(3)你能设计一个公平的游戏规则吗?
二、作业
1.p122
2.p125第12——17题。
板书设计:
略。
课后反思:
略。
五年级数学上册教案优质7篇相关文章: