平行四边形教案模板6篇

时间:
betray
分享
下载本文

出色的教案为教师提供了清晰的评估标准,以便监测学生的学习进展,利用教案中的小组讨论,可以鼓励学生分享观点,促进思维碰撞,以下是大爱范文网小编精心为您推荐的平行四边形教案模板6篇,供大家参考。

平行四边形教案模板6篇

平行四边形教案篇1

教学目标

知识与技能:

1.使学生理解平行四边形和梯形的概念及特征。

2.使学生了解学过的所有四边形之间的关系,并会用集合图表示。

过程与方法:

通过操作活动,使学生经历认识平行四边形和梯形的全过程,掌握它们的特征。

情感态度和价值观:

通过活动,让学生从中感受到学习的乐趣,体会到成功的喜悦,从而提高学习的兴趣。

重点理解平行四边形和梯形的概念及特征。了解学过的所有四边形之间的关系,并会用集合图表示。

难点理解平行四边形和梯形的概念及特征。用集合图表示学过的所有四边形之间的关系。

教具图形,剪子,七巧板

教学过程

教师导学

一、创设情景感知图形

1.出示例1,我们认识过平行四边形,你能说出哪些地方见过平行四边形?(64页)

2.在我们美丽的校园中,你能找到哪些四边形?

梯子的侧面-梯形

3.画出你喜欢的一个四边形。说一说什么样的图形是四边形?

展示学生画出的四边形,请学生标出它们的名称。

长方形 平行四边形

梯形 正方形

4.小组交流:

从四边形的特点来看,四边形可以分成几类?

学生讨论交流

二、探究新知

1.归纳平行四边形和梯形的概念

有什么特点的图形是平行四边形?

两组对边分别平行的四边形叫做平行四边形。

强调说明:只要四边形的'每组对边分别平行,就能确定它的每组对边相等。因此平行四边形的定义是两组对边分别平行的四边形。

提问:

①生活中你见过这样的图形吗? 它们的外形像什么?

②这些图形有几条边?几个角?是什么图形?

③这几个四边形有边有什么特点?

④它是平行四边形吗?

⑤你们在量这些图形时,是否发现它们都有一个共同的特点?如果有,是什么?

只有一组对边平行的四边形叫做梯形。

5.现在你有什么问题吗?

长方形和正方形是平行四边形吗?为什么?

6.用集合图表示四边形之间的关系。我们学过的长方形、正方形、平行四边形、刚刚认识的梯形,你能用这个集合圈来表示他们的关系吗?

平行四边形教案篇2

一、 教学目标:

1.掌握用一组对边平行且相等来判定平行四边形的方法.

2.会综合运用平行四边形的四种判定方法和性质来证明问题.

3.通过平行四边形的性质与判定的应用,启迪学生的思维,提高分析问题的能力.

二、 重点、难点

1.重点:平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法.

2.难点:平行四边形的判定定理与性质定理的综合应用.

三、例题的意图分析

本节课的两个例题都是补充的题目,目的是让学生能掌握平行四边形的第三种判定方法和会综合运用平行四边形的判定方法和性质来解决问题.学生程度好一些的'学校,可以适当地自己再补充一些题目,使同学们会应用这些方法进行几何的推理证明,通过学习,培养学生分析问题、寻找最佳解题途径的能力.

四、课堂引入

1. 平行四边形的性质;

2. 平行四边形的判定方法;

3. 【探究】 取两根等长的木条ab、cd,将它们平行放置,再用两根木条bc、ad加固,得到的四边形abcd是平行四边形吗?

结论:一组对边平行且相等的四边形是平行四边形.

五、例习题分析

例1(补充)已知:如图, abcd中,e、f分别是ad、bc的中点,求证:be=df.

分析:证明be=df,可以证明两个三角形全等,也可以证明

四边形bedf是平行四边形,比较方法,可以看出第二种方法简单.

证明:∵ 四边形abcd是平行四边形,

ad∥cb,ad=cd.

∵ e、f分别是ad、bc的中点,

de∥bf,且de= ad,bf= bc.

de=bf.

四边形bedf是平行四边形(一组对边平行且相等的四边形平行四边形).

be=df.

此题综合运用了平行四边形的性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路.

例2(补充)已知:如图, abcd中,e、f分别是ac上两点,且beac于e,dfac于f.求证:四边形bedf是平行四边形.

分析:因为beac于e,dfac于f,所以be∥df.需再证明be=df,这需要证明△abe与△cdf全等,由角角边即可.

证明:∵ 四边形abcd是平行四边形,

ab=cd,且ab∥cd.

bae=dcf.

平行四边形教案篇3

一 教学目标:

1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.

2.会综合运用平行四边形的判定方法和性质来解决问题.

3.培养用类比、逆向联想及运动的思维方法来研究问题.

二 重点、难点

1.重点:平行四边形的判定方法及应用.

2.难点:平行四边形的判定定理与性质定理的灵活应用.

3.难点的突破方法:

平行四边形的判别方法是本节课的核心内容.同时它又是后面进一步研究矩形、菱形、正方形判别的基础,更是发展学生合情推理及说理的良好素材.本节课的教学重点为平行四边形的判别方法.在本课中,可以探索活动为载体,并将论证作为探索活动的自然延续与必要发展,从而将直观操作与简单推理有机融合,达到突出重点、分散难点的目的.

(1)平行四边形的判定方法1、2都是平行四边形性质的逆命题,它们的证明都可利用定义或前一个方法来证明.

(2)平行四边形有四种判定方法,与性质类似,可从边、对角线两方面进行记忆.要注意:

①本教材没有把用角来作为判定的方法,教学中可以根据学生的情况作为补充;

②本节课只介绍前两个判定方法.

(3)教学中,我们可创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,如通过欣赏图片及识别图片中的平行四边形,使学生建立对平行四边形的直觉认识.并复习平行四边形的定义,建立新旧知识间的相互联系.接着提出问题:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?从而组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,从整体上把握“平行四边形的判别”的方法.

然后利用学生手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件.

在学生拼图的活动中,教师可以以问题串的形式展开对平行四边形判别方法的探讨,让学生在问题解决中,实现对平行四边形各种判别方法的掌握,并发展了学生说理及简单推理的能力.

(4)从本节开始,就应让学生直接运用平行四边形的性质和判定去解决问题,凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明.应该对学生提出这个要求.

(5)平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如,求角的度数,线段的长度,证明角相等或线段相等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.

(6)平行四边形的概念、性质、判定都是非常重要的基础知识,这些知识是本章的重点内容,要使学生熟练地掌握这些知识.

三 例题的意图分析

本节课安排了3个例题,例1是教材p96的例3,它是平行四边形的'性质与判定的综合运用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法.例2与例3都是补充的题目,其目的就是让学生能灵活和综合地运用平行四边形的判定方法和性质来解决问题.例3是一道拼图题,教学时,可以让学生动起来,边拼图边说明道理,即可以提高学生的动手能力和学生的思维能力,又可以提高学生的学习兴趣.如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由.

四 课堂引入

1.欣赏图片、提出问题.

展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?

2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?

让学生利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:

(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?

(2)你怎样验证你搭建的四边形一定是平行四边形?

(3)你能说出你的做法及其道理吗?

(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?

(5)你还能找出其他方法吗?

从探究中得到:

平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。

平行四边形判定方法2 对角线互相平分的四边形是平行四边形

平行四边形教案篇4

一、教材分析

1.教材的地位与作用

平行四边形是最基本的几何图形,也是 “空间与图形”领域中研究的主要对象之一.它在生活中有着十分广泛的应用,这不仅表现在日常生活中有许多平行四边形的图案,还包括其性质在生产、生活各领域的实际应用.

本节课既是平行线的性质、全等三角形等知识的延续和深化,也是后续学习矩形、菱形、正方形等知识的坚实基础,在教材中起着承上启下的作用.平行四边形的`性质还为证明两条线段相等、两角相等、两直线平行提供了新的方法和依据,拓宽了学生的解题思路.

另外本节课是在学生掌握了平移、旋转知识的基础上探究平行四边形的性质,能使学生经历观察、实验、猜想、验证、推理、交流等数学活动,对于培养学生的合情推理能力、发散思维能力以及探索、体验数学思维规律等方面起着重要的作用.

2.教学目标:

知识技能:理解并掌握平行四边形的相关概念和性质,培养学生初步应用这些知识解决问题的能力.

数学思考:通过观察、实验、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力.

解决问题:学生亲自经历探索平行四边形有关概念和性质的过程,体会解决问题策略的多样性.

情感态度:培养学生独立思考的习惯与合作交流的意识,激发学生探索数学的兴趣,体验探索成功后的快乐.

3.教学重点、难点:

重点:理解并掌握平行四边形的概念及其性质.

难点:运用平移、旋转的图形变换思想探究平行四边形的性质.

4.教材处理:

基于“创造性地使用教材”和“真正地以学生为本”的教学理念,我将教材内容进行合理内化、整合.

首先,打破了原教材的知识结构,构建成一个新的教学体系,分为探索平行四边形的性质和平行四边形性质的应用这样两部分,本节课是探索平行四边形的性质.这样安排能很好地体现知识结构的完整性和系统性.

然后,将教材中平行四边形性质的探究活动完全开放,给学生充分探索的时间与空间,动手实验,动脑思考.力图构建学生主动探索、获取知识的平台,使学生真正成为实践的探索者、知识的构建者、愉快的收获者.

最后,把一道命题证明的练习题改编成实验操作型问题.学生利用课前准备好的教具制作成模型,让图形动起来.这样设计有利于学生在图形运动变化的过程中去发现其中不变的关系,从而发现图形的性质.

总之,教材处理力求在深挖概念内涵;拓展性质外延;深化练习效用的过程中达到培养学生创新意识和实践能力的教学目的.

二.教学方法与手段

本节课在教法上体现教师的“启发引导”,帮助学生实现认识上与态度上的跨越;在学法上突出学生的“探索发现”,在教学过程中立足于让学生自己去观察、去发现、去创造.利用多媒体、自制教具辅助教学,增强教学的直观性、实效性.

平行四边形教案篇5

教学目的

1.引导学生观察长方形、正方形的边和角的特点,认识长方形、正方形的共性和各自的特点.

2.会在方格纸上画长方形、正方形.

3.初步认识平行四边形.

教学重点

掌握长方形、正方形的特征

教学难点

长方形、正方形的区别和联系

教具、学具准备

多媒体课件一套(如果没有,可用学具代替)、长方形、正方形纸片,实物图片,七巧板、直尺、三角板.

教学过程

一、创设情境,提出问题.

出示8根小棒(6长、2短)

1.小组活动:你能用这8根小棒摆一些图形吗?看哪一个小组摆的又快又多.

2.交流:请各小组到投影上边摆边说有几种.

3.设疑:图形之间有很多相同的和不同的地方,提出长方形和正方形,它们各有几条边,几个角?每个角是什么角?它们的边和角的特点都一样吗?这两种图形可不可以变成别的形状?这就是我们这节课要研究的内容.(出示课题)

二、主动探索,研究问题.

1.认识长方形.

(1)独立探索,小组交流.从学具中拿出长方报纸片来,动手观察一下它的角和边,会发现什么?(与小组内其他同学交流.)

(2)小组汇报:请小组各出一名代表发言,分别说一说通过研究发现了角和边有什么特点,并且说一说怎样想的或者是怎样做的.找几个组说一说.(如果有用折纸这一办法的,请他说明怎样做的,演示一下,并给予表扬)

(3)辩论:长方形有什么特征呢?(小组讨论)

(4)教师总结:刚才有的同学利用身边的学具量一量,有的同学用折纸这个方法发现长方形相对着的两条边相等,也就是说长方形有两组对边相等,长方形有四个角,四个角都是直角.【演示动画长方形、正方形】

(5)学生之间交流长方形的特点.每个人都用纸折折看,再验证一下.

2.认识正方形.

(1)独立探索,小组交流.

同学们,刚才你们自己动手研究了长方形的一些知识,那么正方形的角和边又有什么特点呢?试试看,相信你能行.

(2)汇报交流:正方形有什么特征呢?(小组互相说)

(3)教师总结.我们用了同样的方法,验证了正方形的边和角的一些特点,也就是正方形的四条边都是相等的,一样长,四个角都是直角.(继续演示动画长方形、正方形)

3.小组讨论:长方形、正方形的联系和区别【演示动画长方形、正方形的特征】.

(1)师问:长方形与正方形有什么相同点和不同点吗?

(2)教师总结:刚才我们研究了长方形和正方形的边角特点.发现它们都有四个角,而且四个角都是直角:它们都有四条边,但是长方形对边相等,正方形不仅对边相等,而且四条边都相等.

(3)引导学生揭示四边形的概念.

由四边形围成的图形就是四边形,长方形和正方形都是四边形.

(4)初步练习:在钉子板上围一个正方形和一个长方形.

4.平行四边形的初步认识.

(1)出示:

让学生自己观察发现,能找出什么图形,你想知道有关平行四边形的什么知识?

(2)投影出示画在方格纸上的平行四边形.

引导学生知道:它们有4个角,4条边.

教师明确:这些图形也是由四条边围成的图形,我们把这样的四边形叫做平行四边形.

教师说明:这些四边形相对的边之间的宽度总是保持一定的(用直尺演示出对边间的距离不变),我们就说它的对边是平行的,所以我们把这些图形叫做平行四边形.

引导学生观察、讨论:借助方格来看一看平行四边形有什么特征?(以小组为单位,研究它的边和角的特点.)

(3)小组研讨,汇报总结.

平行四边形 角:4个

边:四条 相对的边相等

(4)利用学具摆2个不同的平行四边形.

(5)学生拿出制作长方形(平行四边形)框的学具,用手拉它的一组相对的角.如图:

讨论:平行四边形与长方形有哪些相同,有哪些不同?

引导学生:平行四边形和长方形都有四条边,都是相对的边相等.长方形的四个角都是直角,而捏住长方形相对的两个角的.顶点一拉,它就不是长方形了,是一个平行四边形.当平行四边形的角一个变成直角时,四个角就都变成直角,这时平行四边形就又变成了长方形了.【演示动画变化的图形】

三、运用知识,解决问题.

1.要求:利用手中的小三角形摆长方形、正方形、平行四边形.(4个小三角形)

2.利用手中的七巧板摆一些漂亮的图形,再给它起个名字.

四、看书质疑,全课总结.

板书设计

探究活动

七巧板

游戏目的

帮助学生认识几何图形,培养空间关系的认识能力和想象能力.

游戏准备

学生每人准备各种各样的图形,如:三角形、长方形、正方形等.

游戏过程

1.学生按下面三个要求拼图:

①用任意两块图形拼成一个正方形;

②用任意三块图形拼成一个长方形;

2.学生自由拼图,可以拼几何图形、建筑物或其他图案,在规定的时间里谁拼得的图形多,谁就是优胜者.

注意事项

等分长方形的奥秘

活动内容

让学生用折纸的办法把长方形平均分成两份.

活动目标

1.通过折、画、讨论、猜测、验证等形式的活动,使学生掌握用一条直线等分长方形的方法.培养学生创造性思维的能力和探索未知的方法.

2.运用分组的活动形式,培养学生的合作精神和竞争意识.

重点和难点

通过教学,让学生感受并初步掌握实例分析综合思考提出猜测推理验证这种探索问题的方法.是本课教学的重点.如何探索出能等分长方形的直线的规律是本课教学的难点.

活动准备

1.教具:长方形纸若干张、教学课件.

2.学具:直尺、小刀、水笔、大小相等的长方形纸片约10张.

活动过程

1.折一折,把长方形平均分成大小相等的两份.然后用直尺沿着折痕画出直线.试一试,你们能折几种?

(1)请小组成员共同讨论,注意互相分工合作.

(2)长方形纸片在信封里.

(3)动手折纸时间为3分钟,比比看,哪组同学画得又快又对又多?

2.反馈交流:指名上台汇报小组讨论探究的结果.分了几种?是哪几种?然后老师把把相应的折法张贴在黑板上.

3.探索规律.

师:这样的直线还有吗?还有几条呢?我们先不忙下结论,还是先来研究这些已经知道的直线有什么共同特点.

(1)将你们小组等分的长方形纸片2张重叠,并把重叠的长方形纸片拿起来,对准强光处照一照,然后3张、4张逐渐重叠,你发现了什么?

(2)课件显示各种等分长方形的直线相交于同一点的动态过程.

(3)引导学生小结:等分长方形的直线都相交于长方形内的一点.

游戏前,教师可借助磁性黑板等教具作些示范演拼.在学生自由拼图时,教师可在黑板上勾画一些图案,以启发学生思维.

平行四边形教案篇6

教学目标:

1.经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;

2.索并掌握平行四边形的性质,并能简单应用;

3.在探索活动过程中发展学生的探究意识。

教学重点:平行四边形性质的探索。

教学难点:平行四边形性质的理解。

教学准备:多媒体课件

教学过程

第一环节:实践探索,直观感知(5分钟,动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。)

1.小组活动??

内容:

问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。

(1)你拼出了怎样的四边形?与同桌交流一下;

(2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的`语言刻画这个图形的特征。

2.小组活动二

内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?

第二环节探索归纳、合作交流(5分钟,学生动手、动嘴,全班交流)

小组活动3:

用一张半透明的纸复制你刚才画的平行四边形,并将复制后的四边形绕一个顶点旋转180°,你能平移该纸片,使它与你画的平行四边形重合吗?由此你能得到哪些结论?四边形的对边、对角分别有什么关系?能用别的方法验证你的结论吗?

(1)让学生动手操作、复制、旋转、观察、分析;

(2)学生交流、议论;

(3)教师利用多媒体展示实践的过程。

第三环节推理论证、感悟升华(10分钟,学生通过说理,由直观感受上升到理性分析,在操作层面感知的基础上提升,并了解图形具有的数学本质。)

实践探索内容

(1)通过剪纸,拼纸片,及旋转,可以观察到平行四边行的对角线把它分成的两个三角形全等。

(2)可以通过推理来证明这个结论,如图连结ac。

∵四边形abcd是平行四边形

∴ad//bc,ab//cd

∴∠1=∠2,∠3=∠4

∴△abc和△cda中

∠2=∠1

ac=ca

∠3=∠4

∴△abc≌△cda(asa)

∴ab=dc,ad=cb,∠d=∠b

又∵∠1=∠2

∠3=∠4

∴∠1+∠3=∠2+∠4

即∠bad=∠dcb

第四环节应用巩固深化提高(10分钟,通过议一议,练一练,学生进一步理解平行四边形的性质,并进行简单合情推理,体现性质的应用,同时从不同角度平移、旋转等再一次认识平行四边形的本质特征。)

1.活动内容:

(1)议一议:如果已知平行四边形的一个内角度数,能确定其它三个内角的度数吗?

a(学生思考、议论)

b总结归纳:可以确定其它三个内角的度数。

由平行四边形对边分边平行得到邻角互补;又由于平行四边形对角相等,由此已知平行四边形的一个内角的度数,可以确定其它三个角度数。

(2)练一练(p99随堂练习)

练1如图:四边形abcd是平行四边形。

(1)求∠adc、∠bcd度数

(2)边ab、bc的度数、长度。

练2四边形abcd是平行四边形

(1)它的四条边中哪些线段可以通过平移相到得到?

(2)设对角线ac、bd交于o;ao与oc、bo与od有何关系?说说理由。

归纳:平行四边形的性质:平行四边形的对角线互相平分。

第五环节评价反思概括总结(8分钟,学生踊跃谈感受和收获)

活动内容

师生相互交流、反思、总结。

(1)经历了对平行四边形的特征探索,你有什么感受和收获?给自己一个评价。

(2)在与同伴合作交流中练表现,优秀方面有哪些?你看到同伴哪些优点?

(3)本节学习到了什么?(知识上、方法上)

考一考:

1.abcd中,∠b=60°,则∠a=,∠c=,∠d=。

2.abcd中,∠a比∠b大20°,则∠c=。

3.abcd中,ab=3,bc=5,则ad=cd=。

4.abcd中,周长为40cm,△abc周长为25,则对角线ac=()cm。

布置作业

课本习题4.1

a组(学优生)1、2

b组(中等生)1、2

c组(后三分之一生)1、2

平行四边形教案模板6篇相关文章:

小学浮和沉教案模板6篇

幼儿活动教案模板优秀6篇

小班教案含反思模板6篇

春天的音乐教案模板6篇

体育课教案模板优质6篇

粘泡泡糖教案模板6篇

幼儿园科学船教案模板6篇

幼儿园教案含反思模板6篇

幼儿园小班说课教案模板6篇

大班关于冰的教案模板6篇

平行四边形教案模板6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
85676